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Landslides on Sandpiles: 
Some Moment Relations in One Dimension 
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Several relations between the structure of stable recurrent states and the 
statistics of avalanches in a one-dimensional sandpile automaton are derived 
and numerically verified. In particular, it is shown that the average avalanche 
size is determined by the second rather than the first moment of the distribution 
of trough distances. The two moments scale differently with system size, which 
implies multiscaling for the distribution. Moreover, the scaling of edge events 
(avalanches which fall off the pile) is shown to differ from that of bulk events 
(avalanches which remain on the pile). 

KEY W O R D S :  Self-organized criticality; sandpiles; multiscaling. 

Piles of sand were originally introduced by Bak and co-workers (11 as an 
illustration of their general theory of self-organization in extended non- 
equilibrium systems. Dropping sand randomly and slowly onto a table, 
one eventually ends up in a stationary situation where the sandpile is 
marginally stable and each subsequent addition of sand can cause 
landslides on all scales, from a single grain to the size of the pile. Recent 
theoretical work on the subject ranges from renormalized field theory (21 
to developments in the mechanics of powders, (31 partly motivated by 
experiments/41 on real sandpiles. 

The cellular automaton models of Bak et al. Il~ were systematically 
studied by K a d a n o f f e t a l .  151 (KNWZ) and othersJ 61 The common struc- 
tural feature of these models, most clearly displayed in the beautiful work 
of Dhar and co-workers, ~71 is the existence of two distinct levels of descrip- 
tion: the ensemble of stable recurrent states, and the statistics of 
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avalanches, which are perturbations of stable states. The two levels are 
linked by the consistency requirement that avalanches also constitute the 
dynamics which maps one recurrent state into the next. The ensemble of 
recurrent states has some similarities with the set of critical configurations 
in percolation. ~7) 

In this note I explore the relation between stable recurrent states and 
avalanches for a one-dimensional sandpile model first introduced by 
K N W Z  (s) and more recently studied by Carlson etaL ~8) (CCGS). The 
height of the pile above a finite one-dimensional lattice is given by integer 
variables hi, i = 1 ..... L. Sand falls off the open edge at i = L, i.e., hL = 0 at 
all times. The system is closed at the left-hand side (i = 1), so the pile will 
slope to the right. Sand is added in single grains (hi ~ hi + 1) at randomly 
chosen sites throughout the system. After each addition the stability of the 
pile is checked. A site becomes unstable if the local slope z i=  h i - h i + j  
exceeds a threshold z,.  Then two grains of sand fall from site i to site i + 1, 
hi --* h i -  2, and hi+ 1 -o hi+ 1 + 2. Thereby site i -  1 may become unstable 
also and the avalanche spreads backward along the pile. The size of the 
avalanche is determined by the first site iL to the left of i for which 
ziL<<,zc-2, a "trough" in the terminology of CCGS. Each of the sites 
between iL and i releases two grains of sand, which slide down the pile until 
the front end of the avalanche encounters another trough at a site i R > i, 
where the avalanche is stopped. Hence the dynamics which takes one stable 
recurrent configuration to another can be reduced (8) to the motion, 
creation, and annihilation of troughs. For  events which occur to the right 
of the last trough on the pile, the avalanche does not stop, but falls off the 
pile. Such events will be refered to as edge events to distinguish them from 
bulk events, in which no mass leaves the pile. 

CCGS made the remarkable observation that the number of troughs 
per site Pt = Nt /L  vanishes as a power law with system size, Pt ~ L ~ in the 
steady state, with v - 1 / 3 .  This introduces the average distance between 
troughs ( 2 ) =  1 / p t ~ L  v as a new length scale into the problem, which is 
large compared to the lattice spacing, but small compared to the system 
size. Naively, one could expect this length scale to also determine the 
typical size of avalanches. Here I will argue that the distribution of trough 
distances P(2) is broad, and that the scale of avalanches is set by 

~ = ( ' ~ ) ~ L  ~ (1) 

where ~= 1 -  v for edge events and g = 1/2 for bulk events. The physical 
mechanism behind (1) is that avalanches are more likely to be initiated in 
regions where the resulting avalanche will be large. My results show in par- 
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ticular that  unless v = 1/2, which seems very unlikely in view of the numeri-  
cal results (8) (see below), the distribution of t rough distances P(2) displays 
multiscaling, since different moments  of  the distribution scale differently 
with L. This provides a link to the work of K N W Z ,  who found multi- 
scaling for various statistical distributions of  events in one-dimensional  
sandpiles. Very recently, M a n n a  and Kert6sz ~ found multiscaling in the 
distribution of edge events (which is in fact the distribution measured in the 
experiments of Held etal. (4~) of a two-dimensional  sandpile model. My 
arguments  only involve elementary statistics and the requirement of 
stationarity, i.e., the balance between inflow and outflow of mass in the 
pile, in conjunct ion with the t rough representation developed by CCGS.  

We consider a trough-free region O of size 2 bordered either by two 
troughs or  by one t rough and the edge of  the system. By definition, sites 
in O are either marginal,  z i =  z c, or  stable to the addit ion of one grain, 
z i = z + -  1. When a grain is added to a marginal  site i there are two 
possibilities. If site i -  1 is stable, the avalanche does not  spread backward,  
but remains restricted to a single block of two grains. Since such a move 
does not  change the total number  of troughs in the system, C C G S  refer to 
it as a slide event. (8~ These events constitute a finite fraction 2 Ps -~ 1/2 of all 
avalanches. It is useful to distinguish the average avalanche mass {rn) ,  
obtained taking all events into account,  and the average mass of large 
avalanches ~ m )] = ({ m ) - 2p,)/(1 - p,), where slide events are omitted. 
Large avalanches associated with the coalescence of a pair of t roughs 18) 
occur when a grain is d ropped  onto  a pair of marginal  sites. They spread 
to the left border  of ~2 and slide down to the right border. Thus, for a given 
value of  2 the length of a large avalanche is 2/2 and its mass is 2 on average 
(recall that  an avalanche carries two units of mass per site). Let P()o) 
denote the distribution of )~ relative to the ensemble of all stable recurrent 
configurations. It then follows that the average mass of  large avalanches is 
equal to the average of )+, conditioned on the occurrence of an avalanche in 
the region. This average is not  simply equal to the first moment  of  P(2), 
since large regions have a better chance to capture a randomly  dropped 

2 An important property of this sandpile model is that the parity variables at-= zimod 2 
change only through the addition of grains, not during avalanches. Consequently, the ai are 
uncorrelated in the steady state and take the value 0 or 1 with equal probability. In the 
absence of troughs, z~ = z c or zc - 1; hence the slopes are uniquely determined by the parities 
and are also uncorrelated. This implies that p =p+= 1/2 for large 2. Numerically, I find 
significant size-dependent deviations which can be described by p, -1 /2  -1- 0.54L - ~  for 
bulk events and p,---1/2 +0.29L -~ and p-~ 0+47 for edge events. While my conclusions 
only depend on these probabilities to converge to some nonzero limiting values for L ~ ~, 
which is clearly the case, the size dependence of Ps appears to be a major source of correc- 
tions to scaling. 
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grain. Conditioning on the occurrence of avalanches (i.e., the capture of a 
grain) defines a new ensemble in which the weight of a region of size 2 is 
multiplied by 2. The normalized probability distribution for the condi- 
tioned ensemble is thus 

2 
P(2) = ~ P(,~) (21 

and its first moment is given by (1). We conclude that 

( m ) ~ = 1  (3) 

for bulk as well as for edge events. Since the large avalanches dominate the 
distribution, 

( m )  ~- (1 - ps)(m)t-  ~/2 (4) 

asymptotically. 
Next I establish the scaling of ~ with L for the edge events. Here 2 is 

the distance of the last trough from the edge. The probability to trigger an 
avalanche beyond the last trough is P(2)/L, where p - 1/2 is the density 
of marginal sites in that region (see footnote 2). Since the edge events must 
transport one grain out of the system for every grain added anywhere on 
the pile, mass balance requires that the average size of edge avalanches is 

L 
( m )  = (5) 

P(2> 

Hence the average mass scales as L *-v and using (1) and (4), we expect 
that ( 2 2 ) ~ L .  I have numerically measured the average mass of edge 
avalanches and the first and second moments of P(2) for piles of sizes L = 
125~,000 (Fig. 1). Power-law fits to the data give ( m ) =  0.75L ~176 ( 2 ) =  
3.3L ~ and (22)  = 7.7L TM, in reasonable agreement with the predictions. 
It should be noted, however, that the high quality of the fit (cf. Fig. 1 ) rules 
out a statistical origin of the rather sizeable deviations from the expected 
behavior. Instead, it seems that the approach to the asymptopic regime is 
exceedingly slow in these systems, for reasons (see footnote 2) that remain 
to be understood. 

A slightly different mass balance argument is invoked for the bulk 
events. The number of bulk avalanches triggered by dropping N grains of 
sand is O(N). Each (large) avalanche covers of the order of ~ sites, hence 
a typical bulk site is affected by O(N~/L) avalanches, each of which carries 
a mass of O(~). Mass balance requires the flux through any bulk site to be 
O(N) and therefore ~2~ L, or 

~bulk ~ '  L1/2 (6) 
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l d sandpiles, edge events 
Fig. 1. Length scales associated with edge events. The number of avalanches generated 
to obtain these data ranges from 2 x l0 7 for the smallest, to 2 x l0 s for the largest piles. 
The dotted lines are least squares power-law fits to the data. The predicted asymptotic 
relationship is (.) 2 ) / ( ) . )  ~ 2(m)  -~ 4L/(2). 

It should be emphasized that this argument also applies to sites close to the 
edge (except for the very last site, i = L). This does n o t  contradict the pre- 
vious argument for edge events, since any site i < L has a finite probability 
to be to the left of  the last trough and hence to receive flux from avalanches 
which do not leave the pile. 

Figure 2 shows numerical results for bulk events. Averages were taken 
over all events and troughs which were located between the first and the 
last trough on the pile. This procedure smears out the spatial variation of 
the trough density, (8) but has the advantage of generating better statistics 
as compared to measuring events occurring at a single site. The results are 
well described by the power laws ( m ) = 0 . 8 3 L  ~ ( 2 ) =  1.95L TM, and 
( , ;2)  = 3.8LO.84, which is considerably closer to the expected behavior than 
was the case for the edge events. I also note that the average trough dis- 
tance ( 2 )  seems to scale with the same exponent v---0.36-0.38 for bulk 
troughs as for the last trough at the edge, which was not necessarily to be 
expected. It is not clear at present whether the deviation of this effective 
exponent from the value v -- 1/3 obtained (8) (also J. Krug, unpublished) for 
the trough density is significant or not. 

In summary, I have pointed out the existence of at least three different 
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Length scales associated with bulk events. The number of avalanches generated was 
between 107 for the smallest, and 5 • 106 for the largest piles. The dotted lines are least 
squares power-law fits and the full line serves to guide the eye. The predicted relationship is 
< )  2 > / < / 1 . >  ~ 2 < m  > ~ L 1/2. 

mesoscopic length scales in the one-dimensional sandpile model the 
average trough distance, the average size of edge events, and the average 
size of bulk events--and I have shown how these length scales arise from 
the large fluctuations in the spatial distribution of troughs. It would be 
interesting to elucidate further how these results relate to the observed (s) 
multiscaling in one-dimensional sandpiles, as well as to look for similar 
complex behavior in higher-dimensional sandpile automata. (6'9) 
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